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The velocity on the axis of a circular tube was measured over a range of distances 
from a piston reciprocating in simple harmonic motion. These velocities become 
independent of axial distance sufficiently far from the piston. The method of 
calculating the developing flow is based on a comparison with steady laminar 
flow which, in the entry region of a circular tube, approaches the fully developed 
state exponentially with distance 5 from the entry. The steady flow is a function 
of xv/R2uo where v is the kinematic viscosity, R is the tube radius and uo is the 
entry velocity. It is shown that within the limiCs of experimental error, an 
oscillating flow follows the steady flow development if uo is the instantaneous 
entry velocity and if the characteristic length is changed from R to the oscillating 
boundary-layer thickness in the established flow. 

1.1. Previous work 1. Introduction 

The experiments reported here were made on the flow in front of a piston reci- 
procating in a tube of circular cross-section. The establishment length for oscil- 
lating incompressible flow considered here is related to the entrance length in 
steady flow. If  a piston moves uniformly down a tube the distance in front of the 
piston in which the velocity profile changes from being rectangular at  the piston 
to being paraboIic when fully developed is the same as the well-known entrance 
length. The classical work on entrance length, on the experimental side by 
Nikuradse and on the theoretical side by Schiller, is discussed by Schlichting 
(1968, ch. XI). Campbell & Slattery (1963) applied a correction to Schiller’s 
analysis and thus obtained agreement between their theory and the several sets 
of experimental results, including those of Nikuradse, which they quote. Sparrow, 
Lin & Lundgren (1964) describe previous calculations of the entrance region in 
steady flow and presenC a new approach. In  terms of their stretched co-ordinate 
the approach of the velocity to its asymptotic value is exponential. For the tube 
of circular cross-section the relationship of stretched to actual axial distance is 
linear for xv/R2uo > 0.04, where 2 is axial distance from the entry, v the kine- 
matic viscosity coefficient, R the tube radius and uo the mean velocity. It is 
remarkable that none of the published work in this field presents logarithmic 
representations of the approach to the established flow. When relative departure 
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from the asymptotic velocity is plotted logarithmically against a linear scale of 
xv/R2uo for steady flow the best results (for example, from Campbell & Slattery) 
lie very closely on the straight line which is equivalent to  

u/uo = 2 - exp [ - 16.6xv/R2uo], (1) 

where u is the velocity on the axis of the tube and uo the mean velocity. 
The entrance region in unsteady flow has received some attention. Avula 

investigated the entrance region in flow started from rest. In  one study (Avula 
1969a), experimentally determined pressures in the entrance region were used in 
a solution of the equations of motion to determine the velocity. The flow was found 
to be significantly different from that obtained using the more usual assumption 
of pressure gradient independent of time. In  the other treatment (Avula 1969 b )  a 
closed form solution of the integral momentum equation is obtained by the 
method of characteristics for flow impulsively started from rest. The entrance 
length (beyond which the velocity profile does not change with distance) is 
found to increase with time. The entrance length for large times was found to 
approach Schiller's value for steady flow and is thus half the presently accepted 
value. The manner of the variation with time will be discussed later. 

Some experimental and analytical work on the entrance region in pulsating 
flow has been published. Far from the ends of a tube the velocity profiles in 
oscillating flow are known and the oscillating velocities can be simply added to 
the mean flow to obtain the pulsating flow. The theory of oscillating flow in 
rigid and flexible tubes has been formulated by a number of authors, for example, 
Womersley (1955), Uchida (1956) and Cerny & Walawender (1966). Experi- 
mentally determined velocity profiles are in agreement with this body of theory 
(see, for example, Linford & Ryan 1965 or Harris, Peer & Wilkinson 1969). The 
flow far in front of a piston oscillating in a tube is, therefore, known. The way in 
which this flow develops with distance from the piston has not been completely 
investigated though some work has been published. Atabek & Chang (1961) 
obtained an analytical solution for pulsating flow in the entrance region by 
linearizing the equations of motion by means of the assumption that the velocity 
of convection occurring in the inertia terms is instantaneously the same for the 
whole flow and equal to the velocity at  the pipe entry where the velocity profile is 
rectangular. Their solution can only be applied when the mean flux is large 
enough for there never to be reversed flow. The non-dimensional frequency 
a = R(w/u)g, where w is the angular frequency, is the basic parameter of oscil- 
lating flow. Atabek & Chang give the non-dimensional entrance length Lv/R2U as 
a function of time for a = 4 and for the entrance velociCy O(1 + 0.5 coswt). The 
steady flow entrance length which they quote and about which their entrance 
length oscillates is small, Lv/RzU being 0.16 compared with the accepted value of 
about 0.28. The outstanding feature of Atabek & Chang's results is that whilst 
the entrance length oscillates in an approximately sinusoidal manner as one 
would expect, there is a phase lag of about 60" between the length and the piston 
velocity. It is interesting to note that the phase difference between volume flux 
and pressure gradient in the fully developed flow is about 65" (see McDonald 
1960, p. 83). When, however, the phase difference between the entry flow and the 
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fully developed flow is calculated after the manner described by Gerrard (1971 a )  
it is found to be only 15" for a = 4. Whether the phase difference predicted by 
Atabek & Chang is in fact present, or is just a result of approximation in the 
theory, needs to be determined. 

Atabek, Chang & Fingerson (1964) compared measurements of the velocity 
pro6les in the entrance region of pulsating pipe flow with the theory referred to 
above and found agreement within the experimental error. When scrutinized in 
the manner we suggest in this paper there is no indication of the large phase lag 
expected from the work of Atabek & Chang (1961). The experiments of Atabek 
et al. were performed with a = 5.0, an amplitude of the pulsation about 0.3 times 
the mean speed and UR/v = 750, where U is the temporal mean of the cross- 
sectional mean velocity. A second experimental study was reported by Florio & 
Mueller (1968). In  their experiments the entrance length for the oscillating 
component of the pulsating flow was rather short. Their results show that the 
mean flow development in its entrance length is unaffected by the presence of the 
oscillating component. They were unable to investigate the reverse effect on the 
developing oscillating flow. 

It is worth noting that Atabek et al. (1964) seem to be the only authors who 
mention that there is an uncertainty in determining the origin of the axial GO- 

ordinate in flow entering a tube. They apply a small correction determined from 
the theoretical results and measurements close to the entry. This uncertainty 
does not arise when considering flow in front of a piston in a tube. 

1.2. The basis of the present work 

The entrance length in pulsating flow, in which there is never any reverse flow, 
can be calculated after the manner of Atabek & Chang (1  961). This involves rather 
laborious series summation. There exists no method of calculation for the case 
when reverse flow occurs and in particular for oscillating flow when the mean 
volume flux is zero. A consideration of the physics of the entrance region leads 
us to suggest a simple method of prediction of oscillating entrance length from the 
known steady flow value. 

The basic parameter, which is the non-dimensional frequency, a = R(w/v)*, 
is a measure of the ratio of the radius to the distance through which vorticity 
diffuses away from the walls in one period of oscillation. At high frequency, when 
a is large, there is an extensive region in the centre of the fully developed flow in 
which vorticity is very small, that is, where the velocity is almost independent of 
radial position. The velocity in this central region lags the mean (=  the piston 
velocity) by a small amount which tends to zero as a tends to zero and to infinity. 
(Calculated values are 15" a t  a = 4, 11" at a = 8,6" a t  a = 14 and 5" a t  a = 16.) 
We may describe the flow outside this central region as an oscillating boundary 
layer. The boundary layer becomes thinner as a increases. The thickness 6 is 
found by calculating the velocity profile (for example, following Uchida 1956) and 
adopting some definition of boundary-layer thickness such as that distance from 
the wall beyond which the velocity remains within 1 % of the value on the axis. 
Using this definition, 6 is 0.9R in steady flow. It is found that in oscillating flow 
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SIR oscillates with an amplitude of about 10 yo at a = 4, increasing to about 20 yo 
at a = 16. The mean SIR is 0.9 a t  a = 4 and about 0.5 at a = 14. The frequency 
of oscillation of 6 is twice the piston frequency because velocity profiles 180' 
different in phase are identical in shape, but opposite in sign. S is largest at  
zero piston speed and smallest at  maximum piston speed. 

In  steady flow the entrance region is where vorticity is produced at the wall. 
In  this region vorticity diffuses as it is convected downstream, to fill the whole 
cross-section of the tube. The characteristic length which determines the entry 
length is the tube radius. This is borne out by the finding that non-dimensional 
velocity on the axis is a universal function of xvlR2 U for incompressible steady 
flow without heat transfer. In  oscillating flow vorticity diffuses in the entrance 
region only across the oscillating boundary-layer thickness 6 and so the entrance 
length is smaller than in steady flow. The reduction is expected to be proportional 
to S2/R2. It will be shown that the factor of proportionality is close to unity. To 
test this hypothesis results will be plotted logarithmically as a function of 
xvlR2U for steady flow and as a function of xv/S2U for oscillating flow. In  oscil- 
lating flow we make the pseudosteady assumption that U is the instantaneous 
cross-sectional mean speed or the piston speed. The phase difference between the 
piston and the fully developed core flow is small in any case and so it will be 
difficult to detect any error in this assumption. Differences if encountered would 
be expected at  large accelerations. This would introduce a further parameter 
which has not been previously considered. Our experiments and those of other 
workers were made a t  small accelerations. 

1.3. Application to previous work 

The experimental results of Atabek et al. (1964) are indicated graphically by them 
to have a rather large uncertainty. The logarithmic plot of the departure from 
the fully developed state exaggerates the errors. We chose, therefore, to plot their 
theoretical values taken from the same graphs. There remains a double source of 
error in the plotting of their results and our readings from the published graphs. 
The resulting logarithmic plot is shown in figure 1 .  

The value of a was 5 in this work and SIR is 90 & 10 yo. R has been used rather 
than 6 as the characteristic length, not only because 6/R is almost unity, but also 
because the velocity considered is a combination of the steady and oscillating 
components. 

We notice that large scatter is evident when the velocity is less than 10% 
different from the fully developed value. This is considered t o  be simply because 
small errors are increasingly magnified in this method of plotting as the developed 
flow is approached. The significant conclusion from figure 1 is that the points lie 
close to the straight line drawn to the entrance length quoted by Atabek & Chang 
(1961) rather than to the accepted steady flow result which is also indicated. For 
this reason further experimental results have been obtained for an oscillating 
flow to which the theoretical treatment of Atabek & Chang cannot be applied and 
for which SIR has the convenient value of about 0.5. 

We may briefly consider again the calculated results of Avula (1969 b )  con- 
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cerning flow impulsively started from rest. The entrance length was found to 
increase with time. The quoted results give values of non-dimensional time, 
distance along the tube and boundary-layer thickness. When entrance length is 
non-dimensionalized using the tube radius it increases by a factor of 34 over the 
times given. Using boundary-layer thickness instead of tube radius to make the 
entrance length non-dimensional results in a range of entrance lengths which 
vary only by a factor of 2.5. The entrance length calculated on this theory for 
infinite time differs by a factor of 2 from the correct value. 

U 
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0 120" 

v 180" 

xv/R2uo 

FIGURE 1. Replotted calculations of Atabek et al. (1964) for a = 5, ?i,R/v = 750. Logarith- 
mic plot of the relative departure of the velocity on the axis from the fully established value 
as a function of distance from the entry. u., = established velocity on axis, u, = entry 
velocity, u = velocity on axis at distance x from entry, G,, = mean entry velocity, 

u, = zO(l - 0.123 cos ot+ 0.321 sin ot). 

2. Apparatus and experimental procedure 
The experiments were made in the pulsating flow apparatus previously 

described by Gerrard (1971 a). The piston moved in simple harmonic motion at  
one end of a straight tube 8 m in length. The other end was connected by flexible 
tubing of the same diameter to a tank open to the atmosphere and situated 4m 
above the straight tube. All the measurements were made within a distance of 1 m 
from the piston. This working section, in which the piston reciprocated, was 
precision-bore glass tubing 1 m in length and 3.81 k 0.005 cm in diameter. Glass 
was used in preference to acrylic tubing because of the variation of inside diameter 
of plastic tubes. To accommodate the fine wires used in the flow visualization 
technique the glass tubes were provided with holes at  opposite ends of diameters 
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at various distances from the end. In  all the measurements the angular fre- 
quency of the piston was 0.57 radian s-1 and its amplitude was 9.9 cm. The value 
of a = R(w/v)& was 14.4. The flow was laminar at all times. 

The method of measurement of velocities in the entrance region was similar to 
that employed by Davis & Fox (1967). They used the hydrogen-bubble tech- 
nique to measure velocities in the entrance region in steady flow. The technique of 
velocity measurement used in the present work was first described by Baker 
(1966). The working fluid was a dilute aqueous solution of thymol blue pH indi- 
cator which had been titrated to its end point. Increase in alkalinity produces a 
colour change from yellow to dark blue. A fine platinum wire of diameter 25pm 
was stretched across a horizontal diameter of the tube and served as the cathode. 
The anode was a brass flange at the end of the glass tube. By pulsing a voltage 
between these electrodes, bands of coloured fluid were produced which drifted 
with the flow. Velocities were determined by taking cine fdms of the motion of the 
bands of coloured fluid. Contrast was improved by illuminating with a sodium 
discharge lamp. A series of fine wires that moved in phase with the piston were 
arranged outside the tube so that there was always at  least one of them in the field 
of view of the camera. In  this way the phase of the piston at  any instant could be 
calculated from the film. 

Only half of the oscillatory motion was filmed: from the fully withdrawn 
position, O", to the fully extended position of the piston during its forward stroke. 
The voltage was pulsed so that at  each of the phase angles under consideration 
(30", B O O ,  90" and 175') there was at least one coloured band visible. 

The drift of the coloured fluid was measured on the negatives of the film in a 
measuring machine. Absolute drift distances were obtained by comparison with a 
calibration photograph of an accurately lined graticule positioned so that its 
lined surface lay on the horizontal diameters of the fluid filled tube. The graticule 
was positioned and photographed after each run before the camera was moved. 
The camera frame speed was about 25 s-1 and was accurately determined from 
photographs of a stop watch. A correction was applied to the velocities deter- 
mined from the drift distances and the framing interval because the coloured fluid 
lay in the wake of the wise by which i t  was produced. The effect is discussed by 
Schraub et al. (1965) and by Davis & Fox (1967) for the case of hydrogen bubbles. 
Further work which shows that the wake effect is the same in the present method 
has been completed in this department (Gerrard 1971 b ) .  

In  this method of velocity determination individual measurements of the 
velocity have a large uncertainty because the edges of the coloured fluid are 
diffuse. To increase the accuracy many measurements of the same quantity are 
made on different photographs. Measurements were repeated until there were 
enough of them to ensure that the velocities they provided were distributed in an 
approximately Gaussian manner. The values presented below are the arithmetic 
means and the r.m.s. errors of the means are indicated. These errors are smaller 
than those of the individual readings in the ratio of (n - 1 )6, where n is the number 
of readings. 
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3. Presentation and discussion of results 
In  figure 2 the results are presented as the difference between the fluid velocity 

on the axis and the piston speed at  the four phase angles considered. This quan- 
tity is plotted against xv/R2u, where both x and uo are variables. The kinematic 
viscosity v and the tube radius R were constant: u,,, the velocity at x = 0, is a 
function of the phase angle only. The dashed curves in figure 2 represent reason- 
ably smooth curves through the points. The expected gradual approach to the 
fully established condition is evident. Variation close to the piston is more 
complicated. The results for the phase angle 60" show a peak in the velocity dif- 
ference close to the piston. This can be explained with reference to the velocity- 
phase diagram of figure 3. The fully developed fluid velocity lags the piston 
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FIGURE 2. Difference between fluid velocity on the axis and piston speed as a function of 
distance from the piston. Au = u-uo, u = fluid velocity at  distance x from piston, 
uo = piston velocity. Bars denote limits of errors. uo cc sin wt. 

velocity and has a greater amplitude. The fluid very close to the piston will move 
with the piston speed. The curve of fluid velocity a long way from the piston 
intersects the piston velocity variation in the region of 60". Thus the magnitude 
of the velocity difference Au, after initially increasing with increasing distance 
from the piston, will reach a maximum, corresponding to the dashed curves of 
figure 3, and will then decrease towards the final value. The peak of the curve in 
figure 2 could not be reached with the wire positions available. A further com- 
plication close to the piston is due to the formation of a ring vortex at  the start 
of each forward stroke of the piston. This will be discussed in detail in another 
publication and is treated also by Tabacynski, Hoult & Keck (1970). At some 
phase angles, measurements close to the piston were not possible because of 
the distortion of the velocity field by this vortex. 

By using the statistical methods described, reasonable accuracy was obtained. 
An accurate estimate of the errors involved was also possible. The calculation 
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of the mean and its standard deviation involved between eighteen and thirty 
readings to ensure a Gaussian distribution of the results. For the phase angles 
60" and go", at which the velocities were highest, more readings were required. 
At higher velocities the edges of the dyed fluid were less distinct and so there was 
a greater uncertainty in the measurements. 
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FIGURE 3. Piston and fluid velocities as a function of time and distance from the piston. 
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FIGURE 4. Logarithmic plot of the experimental results. 
a = 14-4, o = 0.57 radian s-1, ug = 5.64 sin wt em s-l. 
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The establishment length and the approach to the fully developed flow are 
displayed in figure 4 which shows the measurements plotted logarithmically 
against distance from the piston. This distance is non-dimensionalized using the 
instantaneous piston speed and the oscillating boundary-layer thickness S. 
Values of SIR at the relevant phase angles are shown on the figure. The limits of 
error shown for one phase angle are typical of all the measurements. These limits 
increase at  small values of the relative departure from the fully developed 
velocity because of the nature of the logarithm: at the right-hand side of the 
graph the limits extend to minus infinity. The upper limit of error is shown for all 
points which have a negative ordinate. Also shown is the approach, on the tube 
axis, to fully developed steady flow, based on 6 = 0.9R. The velocity at 0.9R is 
99 % of the axial velocity in steady flow. It is seen that the steady flow curve is a 
reasonable representation of the oscillating flow behaviour . More precise measure- 
ments are obviously needed to discriminate further. Some measurements diverge 
from the straight line at small distances from the piston for the two reasons 
explained above. 

4. Conclusions 
As closely as present measurements show, the development of an oscillating 

flow in the entry region of a pipe of circular cross-section is the same as it is for 
steady flow if the axial distance x from the entry is expressed as xv/S2u,, where v 
is the kinematic viscosity coeficient, u,, is the instantaneous entry velocity and 
&is the oscillating boundary-layer thickness of the established flow. The definition 
chosen for 6 is that distance from the wall beyond which the velocity differs by 
less than 1 % from the centre-line velocity. In  steady flow this is 0.9 times the 
tube radius. The conclusions of Florio & Mueller (1  968) suggest that the method 
will also apply to pulsating flow in which the mean volume flux is not zero. 
Measurements at  higher frequency, w ,  are needed to determine the effect of 
acceleration on the pseudo-steady approach. 

The second author wishes to gratefully acknowledge that during the course of 
this work he received a maintenance grant from the Science Research Council. 
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